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Demand for massive directories

* New applications that use file systems as a fast,
lightweight “database”

— All clients creating large number of files in a single
directory at high speeds!rcs08!

— Examples: N-to-N checkpoints, science apps

* Highly concurrent execution of data-intensive apps

— By 2020, Exascale-era clusters expected to have up to
one billion coresldarpa0é-study]

— Even simple workloads can stress the metadata service



State of file systems today

* Provide high parallelism on the data path, not
much on the metadata path
— Either store directories on one metadata server
— Or avoid many small files using new semantics!¢009/eFs]
— Distributed directories: GPFS[>chmuck02] gpd Lustreltustre!

* Goal: Highly parallel directory indexing (GIGA+)

— Push scalability limits while maintaining UNIX FS and
POSIX-like semantics



Challenges in distributed indices

* Setup: Directory partitioned, mapped to servers

 How do servers expand partitions?

— Serialized order of splitting!-™"%! or synchronized
splitting using lockslSchmuck02]

— GIGA+ avoids both serialization and synchronization

 How do clients learn about new partitions?
— Servers ensure client’s mapping consistency!>chmuck0?]

— GIGA+ tolerates inconsistent mapping state at clients
* Note: Apps see strong data consistency



GIGA+ illustration

Total hash range (o,1] is split over different partitions P,
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e Hash-based partitioning

* Design decision: incremental growth

— Keeps small directories on a single server
—99.9% of directories less that 8K entries/P2yal08]



G I GA+ iIIUStratiOn (contd.)
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* Repeated splitting, proportional to the size

— Avoids one-time full width splitting; may lead to
many small-sized partitions



G I GA+ iIIUStratiOn (contd.)
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 Servers split independently, without any synchronization
— Split only until all servers have appropriate # of partitions



G I GA"‘ i"UStratiOn (contd.)

Logical view of Physical view (mapping & partitions) on each server
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* Servers keep partlal mapping view of the mdex
— View includes a partition and a “history” of its splits



Experimental evaluation
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Cluster file system
(directories are stored on
separate servers from
the actual data)

« Benchmark: Modified mdtest (http://sourceforge.net/projects/mdtest/)

— Concurrent create workload that creates files proportional to the # of servers
(400K file on 1 server, 800K on 2, and so on ... )

* Setup: 64 nodes, dual quad-cores with 16GB RAM with a 10 GigE network
— Each machine has SATA disks running a local file system
— 8 client threads generating work per server



Experimental evaluation
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Experimental evaluation

Full evaluation @
the poster session

throughput All the servers
A are in use
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Measurements

behavior in steady-state

Scale and performance

Scale-out
Load-balancing Effect of layering on
Client-side cost different local FSs 5 time
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Single-node baseline performance

mmm GIGA+ (library interface)
GIGA+ (VFS/FUSE interface)

20,000- 22 e Es * VFS/FUSE sends three
Em NFS
p——— RPC requests for every
S5 ReiserFS 7 file create

15,000

* On par with the real

Average file creates per second (in one directory)

10,0007 distributed FSs
5,000 * Local FS configurations
— Client threads create files
Z, in a local directory

GIGA+ Networked FS Local FS
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Scaling FS directories

Aggregate Throughput
(File creates/second)

fffffffffff  GIGA+ over tmpfs‘
| GIGA+ over ReiserFS ««-=---
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~98K creates/second

Sub-linear scaling due
to the implementation

decisions of localFS
(ReiserFS on disk)



Incremental scale-out performance
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* Linear scaling after
distributing over all
servers

 Throughput drops
during incremental
splitting



Load-balancing effectiveness

* Find load variance for a server |L-L
— Average (95% Cl) over all servers L
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* Load balanced for pow(2)

* For other cases more partitions
per server reduces variance



Avg. load variance (%)

Load-balancing effectiveness

(a) GIGA+ indexing (b) Consistent hashing
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* Needs two orders of magnitude less partitions
on each server than consistent hashing



Low cost of weak mapping at clients

(a) Total client re-routing overhead
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* Negligible rerouting overhead at the clients



Summary of GIGA+

* Push the limits of scalability for FS directories

— store billions of files per directory over hundreds of servers
— sustain 100,000s of mutations/second

* Exploit opportunities to parallelize indexing
— Eliminate system-wide synchronization and serialization
— Avoid strong consistency (for everything other than data)

 Maintain UNIX FS and POSIX-like semantics

— Complement existing cluster FSs and run unmodified apps



